Tools for finding numerical algorithms

Your answer may be off in the exponent by one, but if it is more than that, please speak to the instructor or a teaching assistant or your peers. You should use a program like C++. If you find this programming to be frustrating, please consider visiting

https://replit.com/@dwharder/3-Tools-for-finding-numerical-algorithms,

but not until after you try this on your own, please.

1. For what power of two is the approximation of the derivative of $\tan (x)$ most accurate when approximating the derivative at $x=0.001$ (one milliradian) or $x=1.57$? Use the approximation $(\tan (x+h)-\tan (x)) / h$.

Answer: When $x=0.001$, it appears to be most accurate when $h=2^{-26}$. When $x=1.57$, it appears to be most accurate when $h=2^{-37}$.
2. We have this approximation of the derivative:

$$
f^{(1)}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} f(x) \approx \frac{f(x+h)-f(x)}{h} .
$$

Now, the second derivative is:

$$
f^{(2)}(x)=\frac{\mathrm{d}^{2}}{\mathrm{~d}^{2} x} f(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} f(x)\right) .
$$

Now, the entry in the brackets is $f^{(1)}(x)$, so we have

$$
f^{(2)}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} f^{(1)}(x) \approx \frac{f^{(1)}(x+h)-f^{(1)}(x)}{h} .
$$

Now, if $f^{(1)}(x) \approx \frac{f(x+h)-f(x)}{h}$ then $f^{(1)}(x+h) \approx \frac{f((x+h)+h)-f(x+h)}{h}$, so substituting these into the previous equation, we get

$$
f^{(2)}(x) \approx \frac{f^{(1)}(x+h)-f^{(1)}(x)}{h} \approx \frac{\frac{f((x+h)+h)-f(x+h)}{h}-\frac{f(x+h)-f(x)}{h}}{h} .
$$

With a little bit of algebra, we see that

$$
f^{(2)}(x) \approx \frac{f(x+2 h)-2 f(x+h)+f(x)}{h^{2}} .
$$

For what value of h is this most accurate for approximating the second derivative of $\sin (x)$ at $x=1$?
Answer: It seems to have a minimum error when $h=2^{-17}$ and the absolute error here is approximately 5.455×10^{-6}.
3. Here is an alternative formula for the second derivative, which we will offer without proof:

$$
f^{(2)}(x) \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} .
$$

For which value of h is this most accurate for approximating the second derivative of $\sin (x)$ at $x=1$.
Answer: It seems to have a minimum error when $h=2^{-13}$ and the absolute error here is approximately 1.797×10^{-9}.
4. Which formula is a better approximation of the second derivative, at least with the evidence presented? Answer: It appears the formula in Question 3 is more accurate.

